If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18=24
We move all terms to the left:
x^2-18-(24)=0
We add all the numbers together, and all the variables
x^2-42=0
a = 1; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·1·(-42)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*1}=\frac{0-2\sqrt{42}}{2} =-\frac{2\sqrt{42}}{2} =-\sqrt{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*1}=\frac{0+2\sqrt{42}}{2} =\frac{2\sqrt{42}}{2} =\sqrt{42} $
| 20p+6=10 | | |5(x-2)|=3 | | 5(x+2)-2(3-4x)=3(x+5)-4(4-x) | | 9x+5=4(x–2)+8 | | 1f−0.75=0.5f−0.45 | | 17−4y=14−y | | (6x-4/x+3)=2 | | 10u+6=10 | | x+4/3=3/2 | | 7m-2=5m-6 | | 200y-5=49 | | 15(x-9)-2(x-12)+5(x+5)=4 | | x^2+4x=12-56 | | x-(5/2)*8=3x | | (x-15)=8 | | 3(x-3)=10-4(x-3) | | 2(3x+2)+5=5x+7 | | 10m-4=3m+38 | | 12m-5=m+50 | | 20-3(a+4)=5 | | 6x+4=60-x | | 4t–3–(3t+1)=5t–4 | | 5(3x+1)-2(x-1)=46 | | 2(3y-2)+3(y+2)=20 | | (8n-4)÷3=2 | | 13t-39=9 | | (8n-4)/3=2 | | 20y-7=227 | | (3x+12)=x-10 | | a/5+1/3=-1/15 | | 8x-10=30-12x | | 3x+15+2x-45=180 |